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Household immunity and individual risk of 
infection with dengue virus in a prospective, 
longitudinal cohort study

Marco Hamins-Puértolas1, Darunee Buddhari2, Henrik Salje    3,4, 
Derek A. T. Cummings    4,5, Stefan Fernandez    2, Aaron Farmer2, 
Surachai Kaewhiran6, Direk Khampaen6, Sopon Iamsirithaworn6, 
Anon Srikiatkhachorn7,8, Adam Waickman    9, Stephen J. Thomas    9,10, 
Alan L. Rothman    7, Timothy Endy9,11, Isabel Rodriguez-Barraquer1,12 & 
Kathryn B. Anderson    9,10,12 

Although it is known that household infections drive the transmission of dengue 
virus (DENV), it is unclear how household composition and the immune status 
of inhabitants affect the individual risk of infection. Most population-based 
studies to date have focused on paediatric cohorts because more severe forms 
of dengue mainly occur in children, and the role of adults in dengue transmission 
is understudied. Here we analysed data from a  m ul ti ge ne ra tional cohort study 
of 470 households, comprising 2,860 individuals, in Kamphaeng Phet, Thailand, 
to evaluate risk factors for DENV infection. Using a gradient-boosted regression 
model trained on annual h ae ma gg lu ti nation inhibition antibody titre inputs, we 
identified 1,049 infections, 90% of which were subclinical. By analysing imputed 
infections, we found that individual antibody titres, household composition and 
antibody titres of other members in the same household affect an individual’s 
risk of DENV infection. Those individuals living in households with high average 
antibody titres, or households with more adults, had a reduced risk of infection. 
We propose that herd immunity to dengue acts at the household level and 
may provide insight into the drivers of the recent change in the shifting age 
distribution of dengue cases in Thailand.

The number of individuals infected with dengue virus (DENV) ranges 
from 100 to 400 million per year1–3, primarily in tropical and subtropical 
regions of the world. A substantial proportion of DENV transmission 
occurs in and around the home, with infections having a high likelihood 

of being spatiotemporally correlated4–9. However, individuals living in 
neighbouring but separate households can experience persistent differ-
ences in risk of infection4,5,9. The drivers of heterogeneity in risk of DENV 
infection among households and villages are unknown, potentially 
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approaches have reconstructed subclinical infections by fitting full 
probabilistic models that simultaneously characterize antibody kinet-
ics and infection histories, but this method is data intensive, requiring 
large numbers of longitudinal serum samples collected frequently and 
virologically confirmed infections to estimate antibody kinetics32. 
Such detailed and prospective datasets are not commonly available, 
and therefore, alternative approaches are needed to study the trans-
mission of dengue, understand its drivers and quantify the impact of 
interventions including vaccines.

Here we analyse data from an ongoing longitudinal study in Kam-
phaeng Phet, Thailand, to characterize risk factors of DENV infection 
and disease. A key feature of our longitudinal study is that it enrolled 
multigenerational households, which enabled us to study the risk 
profiles of children, adults and full households in parallel33. Instead of 
relying on fixed cut-points, such as the fourfold approach, we applied a 
flexible classification algorithm that takes yearly paired antibody titres 
to determine whether an individual was infected between sampling 
events. Using confirmed DENV infections to train this algorithm, we 
characterized the dynamics of DENV infections in this cohort, includ-
ing the association between infection and individual and household 
factors, and report our findings here.

Cohort description
This study used data from an ongoing cohort study in Kamphaeng Phet, 
Thailand, that has enrolled 3,514 individuals living in 515 households 
(Supplementary Fig. 1). The study started in September 2015 with the 
aim of defining immunological correlates of protection from DENV and 
illness as well as factors shaping DENV transmission in multigenera-
tional households. A second stage of this cohort is planned to continue 
through 2028. This study included yearly follow-up of participants in 
which serum samples were obtained as well as active illness investiga-
tions and household investigations triggered whenever a participant 
reported a fever (defined as an index case). Yearly serum samples were 
tested using HAI, and illness and household investigations included 
multiple assays (reverse-transcriptase polymerase chain reaction 
(RT-PCR), immunoglobulin M, immunoglobulin G and HAI). Our anal-
ysis included 2,868 individuals within 470 households who had been 
followed up at least once after enrollment and before March 2022. The 
analysed dataset contains data on 11,131 ‘yearly’ intervals, with an aver-
age of 3.90 intervals per enrolled individual (95% confidence interval 

limiting the capacity for targeted interventions. There is evidence sup-
porting focal transmission at either the school10,11 or household level4–7,9. 
Immunity, or susceptibility, of household members may impact the 
individual risk of infection.

Analysing the role of immunity in household transmission is com-
plicated. This is because most infections are subclinical and are there-
fore missed by surveillance systems12,13. Studies characterizing risk 
factors for DENV infection are therefore biased towards symptomatic 
infections rather than the entire population of infected individuals. In 
addition, DENV has historically been concentrated in children so most 
studies have focused on understanding infection dynamics in this sub-
population2,14. This has resulted in large gaps in knowledge about risk 
factors for DENV infection in either adults or entire households. There 
have been recent shifts in the average age of dengue cases towards 
adults in several countries in South Asia15–19. For example, the mean age 
of individuals with dengue haemorrhagic fever has risen in Thailand 
from approximately 8 years to 24 years between 1981 and 2017 (ref. 15), 
making the understanding of risk factors for DENV infection in adults 
now more pressing than ever.

Identifying subclinical DENV infections in individuals is difficult 
because it requires data either from the longitudinal serological test-
ing of large cohorts20–23 or from the follow-up of index cases and their 
close contacts at the household level24–28. Estimates of the proportion 
of subclinical cases vary substantially29 in published observational 
studies, owing to differences in how susceptible the population is to 
the major circulating DENV serotype, definitions of symptomatic and 
subclinical infections, and differences among follow-up monitoring 
protocols. Most studies that have analysed longitudinal serological 
data to identify subclinical infections have defined infections as ‘a 
fourfold increase in antibody levels between two samples for both 
haemagglutination inhibition (HAI)20,22,30 and enzyme-linked immuno-
sorbent assays (ELISAs)’21,23. However, while there is good support for 
using cut-off points in the context of acute and convalescent samples 
obtained weeks apart, their accuracy in identifying infections from 
samples obtained months or years apart in this way is unclear. Due 
to antibody decay in the months following an acute infection31, the 
sensitivity of the ‘fourfold’ approach to identifying infection is likely 
to diminish over time, resulting in underestimates of the true number 
of infections. In addition, it is unclear whether the ‘fourfold’ method 
underperforms in individuals with high initial antibody titres. Other 

Table 1 | Covariates and infection prediction

Covariate No infection  
(n = 10,082)

Symptomatic infection 
 (n = 77)

Subclinical infection 
(n = 972)

Overall (n = 11,131)

Sex
Male 4,192 (41.6%) 39 (50.6%) 425 (43.7%) 4,656 (41.8%)

Female 5,890 (58.4%) 38 (49.4%) 547 (56.3%) 6,475 (58.2%)

Age (years)

Mean (s.d.) 29.6 (22.2) 14.5 (11.1) 22.5 (20.8) 28.9 (22.2)

Median [minimum, 
maximum]

26.2 [1.00, 100] 12.4 [1.18, 57.3] 14.8 [1.02, 88.3] 25.0 [1.00,100]

[1, 5) 1,696 (16.8%) 16 (20.8%) 229 (23.6%) 1,941 (17.4%)

[6, 18) 2,166 (21.5%) 38 (49.4%) 310 (31.9%) 2,514 (22.6%)

[18, 30) 1,732 (17.2%) 17 (22.1%) 153 (15.7%) 1,902 (17.1%)

[30, 50) 2,121 (21.0%) 5 (6.5%) 135 (13.9%) 2,261 (20.3%)

50+ 2,367 (23.5%) 1 (1.3%) 145 (14.9%) 2,513 (22.6%)

JEV vaccination in 
interval

Yes 453 (4.5%) 1 (1.3%) 68 (7.0%) 522 (4.7%)

No 9,629 (95.5%) 76 (98.7%) 904 (93.0%) 10,609 (95.3%)

Pre-interval titre (HAI)
Mean (s.d.) 117.0 (200.0) 31.1 (37.0) 55.8 (83.6) 111.0 (193.0)

Median [IQR] 67.3 [14.1, 134.5] 14.1 [10, 33.6] 28.3 [10, 67.3] 56.6 [14.1, 134.5]

Predicted infections are subdivided into symptomatic and subclinical infections. Japanese encephalitis virus is denoted as JEV.
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(CI) 1–6). Characteristics of the analysed intervals are reported in  
Table 1, and the age pyramid is shown in Extended Data Fig. 1a. The inter-
vals were an average of 407.8 days long (95% CI 229–642.75) and took 
place over 6 sampling periods (Fig. 1a). Not all individuals in a household 
consented to being sampled at every visit, such that approximately 
80% of potential individuals were sampled. Over the study period, 
there were 469 index cases, which resulted in laboratory confirmation 
of 90 infections between paired yearly samples. These 90 infections 
consisted of 61 PCR-positive individuals, and the remaining 29 cases 
were identified using serological evidence and constitute the gold 
standard data used in model training.

Model performance
We fit gradient-boosted regression models to infer subclinical infec-
tions in individuals, from antibody titres measured during yearly visits 
after training on gold standard infections. Our best-fitting model was 
able to classify our training data with 93.3% sensitivity and 98.0% speci-
ficity (Extended Data Fig. 2a). The longitudinal design of the cohort 
study allows visualization of HAI trajectories across time for enrolled 
individuals. Figure 2a illustrates imputed infections for three individu-
als enrolled in the cohort. The average and maximum ratios of pre- to 
post-interval HAI titres are the features of greatest importance for 
accurate classification defined by the information gain metric (Fig. 2b).

Characterizing subclinical infections
Using our best-fitting prediction models on the evaluation dataset 
(n = 9,885), we imputed 959 subclinical infections. When incorporating 
the 90 laboratory-confirmed infections, a total of 1,049 infections are 
identified in 11,131 intervals of observation, or 9.4% of intervals. This 
translates to 12.44 infections per 100 susceptible people per year (95% 
CI 11.01–13.88). Application of the fourfold increase in antibody levels 

to infer infections, as done previously to interpret paired serological 
data, identified a total of 956 infections, suggesting that our method 
identifies ~10% more infections. This is similar to an estimated annual 
proportion of seronegative individuals being infected per year of 10.8% 
derived using a serocatalytic model from age-stratified seroprevalence 
data (95% CI 9.9–11.8%, using seropositive cut-off as HAI ≥ 20) (Fig. 1b). 
We note that the model had high certainty in the assigning of infec-
tions for the majority of infections, with 673 of the 1,049 intervals with 
infection being given a probability of greater than 90%. Similarly, the 
model had high certainty for the absence of infections in the remaining 
intervals, with 8,458 of the 11,131 intervals being assigned a probability 
of less than 10% (Extended Data Fig. 2b). Figure 2c shows where these 
imputed infections fall when comparing the average HAI across all four 
DENV serotypes pre- and post-interval while a breakdown by serotype 
can be found in Extended Data Fig. 3.

We found that the incidence of infections varied by year, with 
2018 having higher incidence (Fig. 3a). Hospitalizations peaked in 
Kamphaeng Phet in 2018 during the analysed study period (Fig. 1a). 
The incidence of infection rates peaked among school-aged children 
(Fig. 3b). As expected, the proportion of primary infections (infec-
tions occurring in individuals without detectable antibodies to any 
serotype in any previous visit) was directly related to age, with almost 
all infections being post-primary (occurring in individuals with HAI 
antibody titres against at least one serotype greater than 20) after age 
25. The ratio of subclinical to symptomatic infections was 13.8:1 (95% CI 
10.0–17.8:1) in the cohort. There was some variability across years and 
age, with the highest risk of symptomatic disease occurring between 
the ages of 15 and 25 (Fig. 3d,e). We note that there were only 77 symp-
tomatic infections out of 1,049 total infections, leading to wide confi-
dence intervals for these ratios, particularly for years of age groups with 
few cases. It is possible that additional mildly symptomatic infections 
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Fig. 1 | Cohort data summary (n = 11,131). a, Hospitalization counts for 
Kamphaeng Phet from 2015 to 2021 (blue solid line). The bars represent the 
timing of the confirmed DENV infections used to train the model (n = 90). 
Serotype information was ascertained via RT-PCR with those confirmed using 
only serology labeled as NA. The shaded time periods represent active sampling 
periods during the cohort study when yearly blood draws were taken.  
b, Age-stratified seropositive individuals at enrollment for participants 

enrolled before 2017. The points are mean seroprevalence found at each tenth 
percentile age bin, and the line is the resulting fit using the serocatalytic model 
for non-newborns below 30 years old (n = 6,197; details found in Supplementary 
Information). c, Average DENV HAI titres at enrollment age binned into each 
tenth percentile. Confidence bounds (95%) for b and c are found using a basic 
non-parametric bootstrap, while a generalized linear model is fit in black. Mean 
and 95% confidence interval are presented as the line and shaded region.
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Fig. 2 | Model performance and fit. a, Three examples of HAI titre trajectories 
for all four DENV serotypes and JEV in three participants. Alternating white and 
grey time periods represent distinct intervals, separated by the sampled HAIs. 
The imputed probability of an infection having occurred within an interval 
is represented by point size at the post-interval sample date, and red arrows 
represent an imputed infection. The black arrows represent JEV vaccination 
events. b, Feature importance for model fits (n = 100). Gain represents the 
relative contribution of each feature. The bars represent the mean, and the 

whiskers represent the 95% credible intervals. c, Pre- and post-interval HAI titres 
for the DENV serotype with the largest ratio grouped by age at the post-interval 
sampling event and coloured by whether the model predicted a seroconversion. 
The yellow and blue dots represent points that were or were not identified as 
infections, respectively, by the model, and the black and red points represent 
a similar dichotomy but in laboratory-confirmed seroconversions. A fourfold 
increase in titres between samples is represented by the black diagonal line.
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Fig. 3 | Incidence, proportion of primary infections and ratio of subclinical 
to symptomatic cases. a,b Incidence (infections per person–year) of both 
symptomatic (red, n = 77) and subclinical (yellow, n = 972) infections across 
interval year (a) and age (b). c, Proportion of primary infections as a function of 
age. d,e, Ratio of subclinical to symptomatic DENV incidence in the cohort as 

a function of interval year (d) and age (e). The mean and 95% CIs for the ratio of 
subclinical to symptomatic DENV incidence are represented by the dotted lines 
and grey regions, respectively. The mean and 95% CIs for polynomial fits to time 
and age are represented by the solid blue lines and blue regions, respectively.
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were missed by the surveillance platform during yearly follow-up, 
and in turn, these estimates probably represent lower bounds on the 
true number of symptomatic infections. Out of these 1,049 infections, 
139 individuals had multiple infection events throughout the study 
(Supplementary Fig. 3a), with the average time between infections 
found to be 733 (95% CI 677–791). The probability of having a second 
or third infection, given that the individual had a previous infection, 
peaks between the ages of 10 and 15, similar to the age range of highest 
incidence (Supplementary Fig. 3b).

Risk factors for DENV infection
Using imputed infections from our classification algorithm, we inves-
tigated which individual and household risk factors were associated 
with infection risk. We found that individuals aged between 5 and 18, 
and between 18 and 30, were at higher risk of infection, with an adjusted 
odds ratio (aOR) of 1.44 (95% CI 1.16–1.77) and 1.41 (95% CI 1.06–1.89), 
respectively, compared with children aged 1–5 years. In an unadjusted 
analysis, there was no significant difference in odds of infection by sex 
(odds ratio (OR) 1.11, 95% CI 0.98–1.27). However, our data are consist-
ent with an observed interaction between age and sex in infection risk 
of women between the ages of 18 and 40, who had an increased risk 
of infection compared with their male counterparts (Extended Data 
Fig. 1c). We also found no significant association between occupation 
and risk of infection in an adjusted analysis (Supplementary Table 2).

We studied how household-level factors affect an individual’s risk 
of infection. No covariates describing the surrounding built environ-
ment had a significant impact on dengue risk. However, we found 
strong associations between household composition and risk of infec-
tion. While the number of individuals living in the household was not 
associated with risk of infection (aOR 1.00, 95% CI 0.97–1.04), we found 

that each additional adult in the household reduced the likelihood of 
infection in the other household members, with an aOR of 0.95 (95% CI 
0.90–0.99). The presence of each additional newborn and individual 
between the ages of 5 and 18 increased the odds of infection for the 
other household members, with an aOR of 2.13 (95% CI 1.65–2.75) and 
1.09 (95% CI 1.01–1.19), respectively. Although not significant, the pres-
ence of each additional individual aged between 1 and 5 increased the 
odds of infection for household members, with an aOR of 1.13 (95% CI 
1.00–1.28; Fig. 4a). Analyses stratified by sex revealed a more complex 
association between household composition and risk. For either sex, 
each additional newborn increased infection risk for the other indi-
viduals living in that household. For older-age groups, however, the 
associations varied by sex. Each additional male between the ages of 1 
and 5 and between 5 and 18 increased risk, with an aOR of 1.25 (95% CI 
1.08–1.44) and 1.18 (95% CI 1.06–1.31), respectively, while additional 
adult males had no impact on risk. Additional females provided no 
changes in risk except for adults, in which each additional female adult 
reduced risk, with an aOR of 0.88 (95% CI 0.81–0.95; Fig. 4b).

Beyond characterizing the association between household char-
acteristics and composition on dengue risk, we sought to understand 
the impact of individual and household immunity. Consistent with 
previous findings, the most important predictor of infection risk during 
an interval was an individual’s HAI titres at the beginning of the interval 
(Fig. 5). In our analysis, the magnitude of average HAI log2 titres was 
inversely associated with risks of both subclinical and symptomatic 
infections. On average, each log2 increase in titres was associated with a 
26.4% (95% CI 23.5–29.2%) decrease in risk of infection and a 38.7% (95% 
CI 27.9–47.9%) decrease in having a symptomatic infection. Interest-
ingly, we also found that household immunity impacted an individual’s 
risk of infection even when accounting for that individual’s antibody 
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Fig. 4 | Household composition and risk of infection across n = 11,131 
intervals. a–d, Household composition (a,b), infection history (c) and immunity 
(d) and their impact on the risk of infection are shown across n = 11,131 intervals. 
In a, the odds ratio is shown for the total number of individuals in various age bins 
(newborn (NB), 1–5 years, 5–18 years, and 18 years or older (GE18)) defined at the 
time of the post-interval sample. In b, the odds ratio is shown for the number of 
males and females of various age bins (NB, 1–5 years, 5–18 years, and 18 years or 
older (GE18)) defined at the time of the post-interval sample. In c, the previous 

interval’s attack rate (AR) and the subsequent odds ratio of infection risk relative 
to having no infections in the previous interval are shown. In d, the geometric 
mean of DENV HAI titres is shown for the rest of the household members and 
subsequent odds ratio of infection risk relative to having a mean household HAI 
titre under 40. All models are adjusted for household random effects, individual 
pre-interval titres and the year and month of post-interval sample; both means 
and 95% CIs are presented. The vertical dashed line represents an aOR of 1 (no 
significant impact on risk).
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titre. The distribution of these variables is found in Supplementary 
Fig. 4. Individuals living in households with high immunity (average 
HAI titres greater than 66) had decreased risk, with an aOR of 0.78 
(95% CI 0.63–0.96) when compared with those with an average below 
40 (Fig. 4d). As household titres are likely to be associated with recent 
household infection history, we also investigated how household attack 
rates during a preceding interval (the proportion of individuals within 
a household that had an imputed DENV infection in the preceding 
interval) impact future risk. Individuals living in households that had 
moderate to high attack rates (greater than 20% of household members 
experiencing an infection) during the previous year were at decreased 
risk of infection, with an aOR of 0.61 (95% aOR CI 0.49–0.77), compared 
with individuals coming from a household with no infections in the pre-
vious year (Fig. 4c). We also found that higher proportions of immune 
individuals at the household level decreased the risk of infection for 
household members (Supplementary Fig. 5).

Sensitivity analyses were generally consistent with original find-
ings. We want to highlight that if infections are imputed using a fourfold 
increase in any DENV serotype HAI titre, instead of the classification 
model developed here, the protective association between individual 
and household titres and infection risk remains (Extended Data Fig. 4). 
Specifically, for each log2 increase in an individual’s titres, there was an 
associated 28.5% (95% CI 25.5–31.4%) decrease in risk of infection and 
a 40.1% (95% CI 2.1–50.7%) decrease in having a symptomatic infec-
tion. Sensitivity analyses in which we restrict the data to households  
with more than 80% of individuals sampled and just seronaive  
individuals were also consistent with the main findings (Extended 
Data Figs. 5 and 6).

Discussion
We developed a classification algorithm using longitudinal data from a 
multigenerational cohort in Kamphaeng Phet, Thailand, to reconstruct 
subclinical DENV infections. Inferring subclinical infections with more 
precision enabled us to analyse individual- and household-level fac-
tors that affect risk of DENV infection. We report a protective effect of 
higher HAI titres at both the individual and household levels. Although 
previous work has shown that higher antibody titres protect individu-
als against infection32,34,35, we report an independent indirect effect of 
household immunity and composition on infection risk.

We studied how several household factors including composi-
tion, immunity and infection history each independently affect risk 
of infection with DENV. We found that all three factors determine an 
individual’s risk. When analysing household composition, we found 
that each additional adult reduced the likelihood of an infection, while 
each additional young child (1–5 years old) increased the likelihood of 

infection. These findings might be explained by the fact that children 
are more susceptible to infection than their adult counterparts who 
have already experienced infection and developed immunity in the 
past. We also found that higher levels of household immunity, and 
higher attack rates in the previous year, have protective effects against 
infection. These associations were evident even though there are other 
potential locations in an individual’s daily routine outside the home 
that impact risk of DENV infection, limiting the indirect protection 
in the home. Taken together, households with more adults or more 
recent infections will have more immunity to DENV and in turn reduce 
subsequent infection risk for household members.

At the individual level, our results are consistent with those of 
previous studies showing that individual antibody titres are the most 
important predictor of future DENV infection risks32,34,35. How this rela-
tionship varies across adults is less understood. Here we find that the 
risk of infection for adults over the age of 30 remains high, at approxi-
mately half that of younger individuals. These infections occur in 
individuals who have been infected two or more times and are in turn 
multi-typically protected. This is particularly relevant to the open 
question of how long boosting post-infection confers immunity and 
protection from clinical manifestations. For these same individuals, 
we find a higher subclinical to symptomatic ratio, suggesting that 
these adults are probably exposed to DENV while simultaneously not 
experiencing symptoms.

We hypothesized previously that the aging population of Thailand 
resulted in a decrease in the force of infection, potentially driven by 
longer-living adults that have multitypic immunity who reduce the 
risk that younger individuals living in the same household experience 
an infection15,36. Our results lead us to propose that a combination of 
immunity and recent infection history in a household can confer a form 
of ‘herd immunity’ for an individual, regardless of their own immune 
status. Children are more likely to be seronaive than adults and may 
present a means by which DENV can be introduced into the household. 
Introduction of DENV would subsequently increase the risk that the 
virus will be transmitted (by mosquitoes) to others in the household, a 
mechanism that would explain some of the spatial correlations found in 
another study of the same population37. It is intriguing that household 
composition, immunity and infection history have a significant impact 
on infection risk, whereas covariates measuring the surrounding built 
environment do not.

Our work provides a framework upon which machine learning 
classification models could be used to predict infection events from 
yearly serological data. Although application of a fourfold rise in titres 
as a barometer for infection can be useful when analysing acute and 
convalescent titres, our approach is a more robust and sensitive way 
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Fig. 5 | Impact of pre-interval DENV titres and probability of infection and 
symptoms across n = 11,131 intervals. We first calculated the annualized 
probability of infection and then fit splines of order three to the data using a 
generalized logistic regression with 95% confidence intervals presented as 
shaded regions. All panels also contain means and 95% confidence intervals 

derived from basic non-parametric bootstraps. a, The annual probability of 
infection is a function of their pre-interval DENV titres. b, The annual probability 
that an individual is symptomatic is a function of their pre-interval DENV titres. 
c, The annual probability that an individual is symptomatic given that they were 
infected is a function of their pre-interval DENV titres.
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to characterize subclinical infections. Previously, Bayesian-based 
approaches have been successful at reconstructing dengue infec-
tion events32,38, but they require substantial temporal information to 
inform the underlying mechanistic model of antibody kinetics. Our 
method provides a flexible framework that removes some of the bias of 
potential model misspecification and instead takes a fully data-driven 
approach to reconstruct infection events. This methodology could 
more broadly be applied to other infectious diseases in which longi-
tudinal serological data are collected.

Our results highlight the importance of multigenerational house-
hold studies to fully understand the population dynamics of infectious 
diseases. The protective effects of household immunity had been hid-
den in previous analyses, some in the same setting, that have focused 
on children. However, our work has some limitations. Our model 
training is limited by the fact that there are only 90 data points used 
to inform the classification algorithm. If these illness investigations 
are biased, this would propagate to our predictions. In particular, 
as primary and subclinical DENV infections are underrepresented, 
then we may be less capable of identifying these DENV infections. In 
addition, development of the training data required that we define 
individuals who had no infection event during an interval, a difficult 
task that could further limit our approach. We were unable to differ-
entiate between homologous and heterologous infections owing to 
HAI data being cross-reactive across DENV serotypes (Supplementary 
Fig. 6). Instead, we are only able to determine whether an individual 
had an exposure or not during a given interval. If plaque reduction 
neutralization test data were used instead, it is possible some addi-
tional serotype-specific information could be elucidated; however, 
cross-reactivity is also an issue for plaque reduction neutralization 
tests in post-primary infections. Another limitation of the study was 
the fact that serum samples were taken at yearly intervals. This made 
it impossible to fully disentangle the timing of infections that would 
provide important information on how infections propagate in a 
household. Incorporating additional active sampling events through-
out the year in household studies like this one could provide important 
temporal information to understand this further. Finally, due to study 
design, most female participants of reproductive age give birth upon 
enrollment. We are therefore not in a position to examine whether 
the sex differences found between the ages of 18 and 40 are due to 
age or to other biological or behavioural factors (Extended Data Fig. 
1) related to pregnancy and giving birth. Further work must be done 
to fully understand this relationship.

There is a critical need to better understand how immunity 
impacts the spread of infectious diseases like DENV. With DENV infec-
tions being highly spatiotemporally correlated in endemic settings, 
the success of future intervention efforts hinges on the ability to accu-
rately quantify infection risk. Disentangling risk into the component 
contributions from individual-, household- and community-level fac-
tors could help direct these efforts. Individuals with higher immunity 
are protected from infection and disease, while entire populations 
can also experience similar protective effects from population-level 
immunity. Here we show evidence of protective effects of immunity 
at the household level.

If household immunity is a major driver of spatiotemporal clus-
tering, interventions may be effectively targeted towards households 
with lower immunity. Considering immunity at multiple scales when 
mapping dengue risk and making public health decisions is important.

Methods
Kamphaeng Phet family-based cohort study
This study used data from an ongoing family-based longitudinal cohort 
study in Kamphaeng Phet, Thailand. Details of the design have been 
previously described33. Briefly, we enrolled pregnant mothers and their 
multigenerational households. Per the inclusion criteria, a household 
was eligible for enrollment if a minimum of three members in addition 

to the newborn consented or assented to participation: the pregnant 
woman, another child and an older adult aged at least 50 years. Active 
surveillance began with the birth of the newborn, with enrollment spec-
imens for the remainder of the household collected before the birth of 
the newborn. To ascertain subclinical infections, serum samples were 
obtained from all participants roughly annually after enrollment. Acute 
febrile illness events were detected through a combination of active 
and passive surveillance strategies. Individuals were instructed to 
notify study staff if an acute febrile illness event occurred. In addition, 
participants were contacted by the study team on a weekly basis to 
determine if any member of the household had been febrile since the 
last contact. Upon discovery of a febrile episode, an illness investigation 
was triggered, in which acute and convalescent blood samples were 
obtained from the febrile case. If the illness investigation identified 
a PCR-confirmed case, a household investigation was triggered in 
which acute and convalescent samples were taken for the remaining 
household members. The convalescent samples were taken at 14 and 
28 days after the acute sample collection.

This study was approved by the Thailand Ministry of Public Health 
Ethical Research Committee; Siriraj Ethics Committee on Research 
Involving Human Subjects; Institutional Review Board for the Protec-
tion of Human Subjects, State University of New York Upstate Medical 
University; and Walter Reed Army Institute of Research Institutional 
Review Board (protocol number 2119).

Laboratory methods
All samples obtained during routine visits were tested using HAIs to 
quantify antibody titres against all four DENV serotypes and Japa-
nese encephalitis virus ( JEV)39. In addition, all acute and convalescent 
samples were tested using HAI for all four DENV serotypes and JEV as 
well as immunoglobulin M and immunoglobulin G capture ELISAs for 
DENV and JEV40. All acute samples also underwent DENV RT-PCR41. For 
the purpose of this analysis, we defined a confirmed DENV infection as 
any case that is RT-PCR positive for any DENV serotype or in which both 
HAI and ELISA results using the acute and convalescent samples were 
diagnostic of an infection33. Further details on the specific laboratory 
methods used have been described in previous work42–44 and are sum-
marized in Supplementary Information.

Statistical analysis
The purpose of this analysis was to investigate individual and house-
hold risk factors for DENV infection in this multigenerational cohort. 
To do this, we first fit a classification algorithm to the yearly HAI data to 
identify subclinical infections. We then used these imputed infections 
to investigate individual- and household-level drivers of infection.

Training data
We define a positive- and negative-person period as follows: a total 
of 90 confirmed DENV infections were identified through the case 
investigations. Data from the yearly HAIs surrounding these con-
firmed DENV infections were defined as the positive-person periods. 
For negative-person periods, we took the remaining full dataset and 
removed any interval in which an individual had a confirmed DENV 
infection via the illness investigation, or in which individuals had a 
larger-than-fourfold increase in any one of their yearly DENV sero-
type HAIs. We then removed any individuals living in the same house-
hold during these aforementioned intervals as DENV transmission is 
known to be clustered within households. This left 3,466 intervals that 
could potentially be used as negative controls from the available 11,131 
observed intervals (Supplementary Fig. 1). We randomly sampled a 
third of these to be added to the training data, creating a total of 1,246 
intervals in our training set. The first interval of sampling for newborns 
was excluded in this analysis because of limited representation in the 
serologically supported infections that could provide information on 
maternal antibody kinetics.
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Prediction model
Using training data described above, we ran a gradient-boosted regres-
sion using the R package xgboost45,46. Unlike in random forest models 
in which multiple independently trained decision trees are combined to 
determine the overall likelihood of a model, in gradient-boosted regres-
sion, each decision tree is fit on what the previous trained ensemble of 
trees have misclassified, allowing for refinement on difficult classifica-
tion problems. The candidate predictors we used to train this model 
are listed in Supplementary Table 1. Variables used to summarize the 
ratio and difference between pre- and post-interval DENV titres across 
serotypes (maximum, minimum, geometric mean and variance) were 
calculated at the individual serotype level, and then the summary 
statistic of interest was quantified across all four serotypes.

Model fit
For hyperparameter tuning, we used a random-search approach within 
a nested cross-validation approach in which we initially split the train-
ing data into four cross-validation sets and subsequently performed 
hyperparameter tuning on each subset using fivefold cross-validation. 
Model performance was quantified using the hold-out set. Before each 
random-search run, we randomly downsampled the dataset to balance 
the number of positive- and negative-person periods. We performed 
this random-search approach a total of 5,000 times and saved the top 
100 performing models evaluated on the held-out cross-validation 
set with the lowest log-loss value. The average predicted classifica-
tion score (bounded between 0 and 1) for these 100 runs was taken to 
be the probability the individual was infected in that yearly interval. 
Intervals assigned a value greater than or equal to 0.5 were considered 
to be DENV infections.

Predicting subclinical DENV infections
We subsequently fit the models with the lowest log-loss values on the 
entire training dataset and predicted the presence or absence of infec-
tions in the remaining intervals that make up the evaluation dataset. 
We used the training labels as ground truth and subsequently analysed 
risk factors for the entire dataset.

Characterizing risk factors of DENV infection and disease
We fit a series of univariate and adjusted logistic regressions to char-
acterize how DENV infection risk is a function of temporal, individual 
and household factors. These models were run using the glmmTMB 
function found within the glmmTMB package in R47,48. We fit all models 
using a binomial GLM with a logit link function. All generalized linear 
models were optimized using the nlminb method found in the stats 
package. Only household random effects were incorporated into the 
model as the inclusion of both household and individual random effects 
led to singular fits.

Individual- and household-level risk
We first tested whether demographic factors were associated with risk, 
including age, sex and employment. We binned individuals into five age 
bins (1–5, 5–18, 18–30, 30–50 and 50+). Individuals under 1 year were 
excluded as they will usually have maternal antibodies, which would 
complicate this analysis owing to different kinetics. Sex was defined 
upon enrollment into the cohort. Further information on individual- 
and household-related covariates can be found in Supplementary 
Information.

We subsequently performed analyses to quantify how household 
composition and infection history impacted risk for an individual. 
Data on household composition consisted of the number of newborns, 
individuals between 1 and 5, individuals between 5 and 18, and adults, 
all of whom were broken down by sex. We fit models to estimate how 
the number of individuals in each of these bins impacted infection 
risk. For the analysis on infection history, we fit models to assess how 
the attack rate, the proportion of the household members who were 

inferred to have an infection, in the previous interval (categorized into 
three sets defined as containing strictly 0, (0.2) and [0.2,1]) impacted 
the infection risk. The distribution of these values was zero inflated 
and skewed right owing to many households having no infections in 
the previous interval. Note that we removed the individual of interest 
in determining both the household composition and attack rate of the 
household to isolate how the household is impacting risk. For both of 
these covariates, we fit three logistic regression models, a univariate 
model, a univariate model with random effects and a multivariate 
model with random effects. As the goal of these models was to charac-
terize the independent effect of the household-level covariates, each 
of these multivariate models also accounts for the individual’s aver-
age pre-interval HAI titre as well as the month and year of sampling as 
these have been shown to be important predictors of risk. This ensured 
that the individual’s age, titres and infection history did not impact 
subsequent calculations. Confounding effects of household-related 
factors were accounted for in adjusted analyses in which household 
random effects were incorporated. Note that as this analysis required 
at least two consecutive intervals, around 25% of the intervals were not 
included leaving 6,913 intervals.

We then performed logistic regressions to understand how 
individual and household immunity impact DENV infection risk. We 
defined individual immunity to be the geometric mean of HAI titres 
transformed into log2 space. We defined household immunity for a 
particular individual to be the geometric mean of HAI titres of the 
household transformed into log2 space with the individual of interest 
removed from the calculation. HAI cutoffs of 40 and 66 were chosen 
for the household immunity covariate as these constituted the 33rd 
and 66th percentiles. Similar to the previous analysis, we fit three 
logistic regressions for each, a univariate model, a univariate model 
with random effects and a multivariate model with random effects. 
In addition to these random effects and the covariate of interest, each 
multivariate model also accounts for the month and year of sampling. 
The household immunity adjusted model also accounted for the indi-
vidual’s average pre-interval HAI titre.

Sensitivity analysis
To assess whether our main findings were robust to methodologi-
cal assumptions or potential biases in the data, we performed three 
sensitivity analyses. The first sensitivity analysis that we performed 
was based on the fact that at times not all individuals in a household 
were sampled. Those that went unsampled in a household were more 
likely to be adult males potentially leading to confounding effects of 
households with more missing data. We, in turn, reran the analyses 
with the fourfold increase in titres rule often used as the standard in 
longitudinal serological studies. This sensitivity analysis allows for the 
direct comparison between our prediction algorithm and the most 
commonly implemented approach in the literature (Extended Data Fig. 
4). We also conducted analyses on all intervals taken from households 
with more than 80% of their members sampled, limiting the analysis 
to 6,453 intervals (Extended Data Fig. 5). Lastly, we reran the analyses 
in individuals who were seronaive at the beginning of the interval to 
investigate whether the identified associations were also observable 
in the fully susceptible subpopulation, limiting the analysis to 2,066 
intervals (Extended Data Fig. 6). Further descriptions of these results 
can be found in the ‘Sensitivity analysis’ section of Supplementary 
Information.

Data exclusion
Note that we excluded data from newborns in the analysis to avoid 
potential biases from maternal antibodies49.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
The dataset analysed in this study is available at https://github.com/
marcohamins/role-of-HH-immunity.

Code availability
All code associated with the work is available at https://github.com/
marcohamins/role-of-HH-immunity.
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Extended Data Fig. 1 | Cohort age distribution and various characteristics 
broken apart by sex. (a) Age pyramid of enrolled subjects in five-year bins 
separated by sex (n = 3539). (b) Seroprevalence curve for subjects enrolled before 
2017 in solid line, the analysis was conducted separately by sex. Points are mean 
seroprevalence in each fifth percentile for non-newborns under 30 years old 
(n = 6197). Confidence bounds are found using a basic nonparametric bootstrap. 

(c) Pre-interval DENV titers averaged across all four serotypes and their impact 
on probability of infection. (d) Relationship between pre-interval DENV titers 
averaged across all four serotypes and age. Both analyses included n = 11131 
intervals with points and intervals representing the mean and 95% confidence 
interval. Shaded regions represent the 95% confidence intervals of fits.
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Extended Data Fig. 2 | Model training information and resulting probability 
of infection distribution. (a) Confusion matrix for XGBoost model on training 
data. Reference values are found as outlined in the Methods section titled 
Training data while prediction values are found using the approach outlined in 

the Model fit section of the methods section. (b) Histogram of model predictions 
for probability of infection between sequential blood draws conducted on the 
full dataset.
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Extended Data Fig. 3 | Pre and post interval HAI titers by DENV serotype and 
JEV. Pre and post interval HAI titers for all DENV serotypes and JEV grouped by 
age at post interval age and colored by whether the model predicted a DENV 
infection. Yellow and blue dots represent points that were or were not identified 

as infections respectively by the model while black and red points represent a 
similar dichotomy but in laboratory confirmed seroconversions. A four-fold 
increase in titers between samples is represented by the black diagonal line.
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Extended Data Fig. 4 | Sensitivity analysis on household related factors when 
utilizing the four-fold increase in DENV antibodies. Sensitivity analysis on how 
household composition (a, b), infection history (c) and immunity (d) impact risk 
of infection when infections are defined to occur if there is a four-fold increase in 
antibody levels between paired serological samples (n = 11131). (a) Odds ratio  
for the number of total individuals in various age bins (newborn [NB], from  
1–5 years old, from 5 to 18, and those 18 years or older [GE18]) defined at the time 
of the post-interval sample. (b) Odds ratio for the number of males and females of 
various age bins (newborn [NB], from 1–5 years old, from 5 to 18, and those  

18 years or older [GE18]) defined at the time of the post-interval sample.  
(c) Previous interval’s attack rate (AR) and subsequent odds ratio of infection 
risk relative to having no infections in the previous interval. (d) Geometric mean 
of DENV HAI titers for the rest of the household and subsequent odds ratio of 
infection risk relative to having an average household HAI titer under 40. All 
models are adjusted for household random effects, individual pre-interval titers, 
as well as the year and month of post-interval sample. The vertical dashed line 
represents an aOR of 1 (no significant impact on risk).
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Extended Data Fig. 5 | Sensitivity analysis on household related factors in 
households with high sampling rates. Sensitivity analysis on how household 
composition (a, b), infection history (c) and immunity (d) impact risk of infection 
in households where more than 80% of samples are recorded (n = 6435). (a) Odds 
ratio for the number of total individuals in various age bins (newborn [NB], from 
1–5 years old, from 5 to 18, and those 18 years or older [GE18]) defined at the time 
of the post-interval sample. (b) Odds ratio for the number of males and females of 
various age bins (newborn [NB], from 1–5 years old, from 5 to 18, and those  

18 years or older [GE18]) defined at the time of the post-interval sample.  
(c) Previous interval’s attack rate (AR) and subsequent odds ratio of infection 
risk relative to having no infections in the previous interval. (d) Geometric mean 
of DENV HAI titers for the rest of the household and subsequent odds ratio of 
infection risk relative to having an average household HAI titer under 40. All 
models are adjusted for household random effects, individual pre-interval titers, 
as well as the year and month of post-interval sample. The vertical dashed line 
represents an aOR of 1 (no significant impact on risk).
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Extended Data Fig. 6 | Sensitivity analysis on household related factors in 
seronaive individuals. Sensitivity analysis on how household composition  
(a, b), infection history (c) and immunity (d) impact risk of infection in 
individuals who were seronaive at the start of an interval (n = 2066). (a) Odds 
ratio for the number of total individuals in various age bins (newborn [NB], from 
1–5 years old, from 5 to 18, and those 18 years or older [GE18]) defined at the time 
of the post-interval sample. (b) Odds ratio for the number of males and females of 
various age bins (newborn [NB], from 1–5 years old, from 5 to 18, and those  

18 years or older [GE18]) defined at the time of the post-interval sample.  
(c) Previous interval’s attack rate (AR) and subsequent odds ratio of infection 
risk relative to having no infections in the previous interval. (d) Geometric mean 
of DENV HAI titers for the rest of the household and subsequent odds ratio of 
infection risk relative to having an average household HAI titer under 40. All 
models are adjusted for household random effects, individual pre-interval titers, 
as well as the year and month of post-interval sample. The vertical dashed line 
represents an aOR of 1 (no significant impact on risk).
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